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Abstract. Generative Adversarial Network (GAN) models produce a latent space where 
many new images emerge. These models translate vectors from a latent space of 
possible designs into actual images, introducing a new degree of variability to the 
concept of objectile. This research proposes applying a computational aesthetics 
framework to navigate the latent space and present the designer with new images for 
feeding their imagination. Theories of parts to whole from aesthetics and cognitive 
psychology are combined with Birkhoff’s aesthetic measure and computer vision to 
predict aesthetic preferences and map the latent space. 
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1 Introduction 

Generative Adversarial Network (GAN) models can produce hundreds of 

thousands of images rapidly and cheaply. These models utilize a low-

dimensional vector value to map n-dimensional points to generate images. 

Varying this vector slightly and continuously allows an observer to visualize how 

the models can produce interpolations with valid images that transform 

gradually. Primarily, this technique produces animations where each 

point/image is sequentially stored as a frame. Such animations are used to 

comprehend the possible outputs of these models better. 

The architectural discourse is developing ways to discuss and use these 

image-generation models. Because its output is bi-dimensional bitmaps, many 

criteria of evaluation that architects are familiar with when working on 3D 

models are impossible to evaluate (e.g., spatial, structural, and environmental). 

Therefore, this is an opportunity to engage in a meaningful discussion about 

architectural images in terms of their aesthetics. 



 

This paper explores the latent space walk of generative image models by 

evaluating each image individually and quantitatively scoring its aesthetics. It 

utilizes (1) an adapted formula of Aesthetic Measure from G. D. Birkhoff to 

evaluate how efficiently each image produces an aesthetic feeling and (2) a 

predicted hedonic response (PHR) model to predict how each image is liked or 

disliked by an audience. The scoring allows an understanding of what regions 

of the latent space produce the most visually appealing outputs and presents 

them to the designer. 

As an experiment, a latent space of architectural pavilions is generated 

using GAN models and navigated by varying their vectors. Since such a space 

is n-dimensional, the statistic method t-SNE is applied to flatten it into two 

dimensions and map images that are similar closer and dissimilar farther. Such 

a lower-dimensional representation is called a latent space map. An artificial 

neural network trained on the hedonic response of a specific audience is used 

to predict how each image is preferred in a metric titled predicted hedonic 

response (PHR). Such a value arranges all images in the latent space map in 

a third dimension. 

The latent space map is presented to the designer so they can navigate it to 

visualize how each region generates different designs. The designer can 

interact with it by zooming in and out to understand each region better. They 

can also filter the images using the PHR to visualize especially the highest-

scoring images, allowing it to work as a compass for the latent space map. 

This research aims to enable architects to use a computational aesthetics 

framework to understand the latent space of generative models better and 

explore design ideas that are counter-intuitive and unexpected with the 

assistance of image-generating models. This paper approaches the concept of 

latent space from two directions: as a data compression representation and as 

a set of possible designs/images. 

1.1.1 Latent space as data compression representation 

GAN models compress information to learn relevant information about its 

data points (Tiu, 2020). These models read vectors (collections of numerical 

values) from the input images and compress them in the latent space. For 

example, an RGB bitmap of 512 x 512 pixels is represented as a matrix of 512 

x 512 x 3 (each channel of RGB), resulting in 786.432 dimensions. Each 

possible image with this size is represented by a vector with 786.432 

dimensions. When it is compressed to the latent space, it is mapped to a lower 

dimensional vector. Even though the latent space contains fewer dimensions, 

the number of dimensions in GAN is much larger than three, making it 

impossible to imagine. There are methods to visualize it, such as t-SNE, a 

statistical method to map high-dimensional data in two or three dimensions so 

that similar objects are clustered  (Figure 1) (Maaten & Hinton, 2008). 



 

 

Figure 1. A t-SNE projection of the latent space of a model trained to recognize the 
numerical value of hand-written numbers. Source: Despois, 2017.  

These data compression methods make similar images closer together in 

the latent space map. When similar images are clustered together, they belong 

to the same manifold. In data science, a manifold is a group of similar data. 

Similarity must be understood as objects with certain features expressed in their 

lower-dimensional vector. When data is reduced to lower dimensions, one can 

more easily recognize clusters of similarities or manifolds. It is possible to 

interpolate vectors in the latent space to visualize how they output images that 

continuously and smoothly transform from one point to another. This 

interpolation is popularly called latent space walk. 

1.2 Latent space as possible designs 

The vectors inhabit a GAN model’s latent space and are pure virtuality. The 

latent space encompasses all possible imaginations a model can produce, such 

as all possible notes in a musical composition. A GAN model starts as pure 

noise, an undifferentiated field. When presented with a dataset of images, it 

specializes in creating images that are similar to it. The GAN model actualizes 

the vector from the latent space and realizes new images, like an instrument 

translating notes into sound waves. These new images are not fake but virtual 

possibilities of the latent space. They are extrapolations of all real images that 

the machine has seen. Finally, they are the machine’s hallucinations (del 

Campo & Leach, 2022). 

The latent space is also an objectile. The objectile is the combination of the 

words object and projectile and is a concept demonstrated by Bernard Cache 

and Gilles Deleuze (Cache, 1995; Deleuze, 1992) of a new status of the object 



 

that is not molded or standard. This new status of the object implies continuous 

variations of form and matter in a temporal modulation. In the 90s, it was 

associated with the solution space of a parametric model as in all variations of 

Gramazio Kohler’s 2002 mTable (Gramazio Kohler, 2018; van Stralen, 2018). 

The objectile and parametric models deal with the same elements: Parameters, 

variations, modulations, and associations (Duarte et al., 2017). However, 

parametric models can only produce extensive variations, lacking the ability to 

create differences in qualities or intensities. Because the latent space of GANs 

encompasses images that vary in quality, it is a better example of an object of 

continuous temporal modulation, continuous folding and unfolding, and caves 

inside caves. A new degree of variability was introduced from the single 

standard object to the non-standard parametric solution space. The latent 

space of GAN models offers a further degree of difference. 

According to Deleuze, purely actual objects do not exist: “Every actual 

surrounds itself with a cloud of virtual images. This cloud is composed of a 

series of more or less extensive coexisting circuits, along which the virtual 

images are distributed, and around which they run” (Deleuze, 2002). The latent 

space of GAN continuously renews itself, keeping the output image uncertain 

and undetermined.  

2 Methodology 

This chapter describes the (2.1) preparation of the GAN model, (2.2) 

introduces the background on quantitative aesthetics where this work is 

situated, (2.3) discusses developments in the computer vision methodology for 

image analysis, and (2.4) presents how the PHR model was trained. 

2.1 GAN model preparation 

For producing a latent space, StyleGAN2 was adopted because it is state-

of-the-art in unconditional image modeling in both existing distribution quality 

metrics and perceived image quality (Karras et al., 2020). The model was fed 

with 3891 images of architectural pavilions that were scraped from Google 

Images and manually selected to filter only external perspective views. The 

search terms were: “MoMA PS1 YAP”, “Serpentine Gallery Pavilion,” “Tallin 

Architecture Biennale Pavilion,” “Architectural Association Pavilion,” and “ICD 

Pavilion.” The selection criteria of these search terms were the consistency of 

building scale and variation in aesthetics. RunwayML cloud computers were 

used to train the model in 11000 steps, always cropping images at its center. 

The model scored 60 in FID and is publicly available in RunwayML as 

230717_PavilionGAN. The model generated 1000 images (Figure 2) in a sweet 

spot where they were not too abstract (hard to recognize any architectural 

concept or element) nor too realistic (presenting finished designs). 



 

     

     

     

Figure 2. Fifteen images of pavilions that the GAN model generated. Source: 
Authors, 2023. 

2.2 Quantitative and empirical aesthetics 

This research is situated in the long tradition of quantitative aesthetics. One 

can trace its roots in the kanon, a lost aesthetics treatise by the Greek sculptor 

Polykleitos, which is believed to be a “scientific system of proportion, 

symmetria, and idealization to create works that he [Polykleitos] believed to be 

the manifestation of beauty and perfection” (Schuman, 2013). Other precedents 

of quantitative aesthetics are the painter William Hogarth, who proposed ways 

of analyzing beauty (Hogarth, 1753), and the philosopher David Hume, who 

suggested defining standards of taste (Hume, 1757).  

In 1860, the field of empirical aesthetics was founded from the work of 

physician G. T. Fecher, who proposed a formula relating the strength of physical 

stimuli to its psychological sensation  as the following (Fechner, 1965): 

 

γ = k (log ß/b) (1) 
 

Where γ is the sensation, k is a constant, and ß/b is the fundamental value 

of the stimulus.  

In 1933, the mathematician G. D. Birkhoff proposed for the first time a 

mathematical formula for measuring aesthetic objects in his “Aesthetic 

Measure” book. He aimed “to bring the basic formal side of art within the 

purview of the simple mathematical formula defining aesthetic measure” 

(Birkhoff, 1933). Birkhoff describes the aesthetic experience as composed of 



 

three phases: (1) an effort of attention proportional to the Complexity (C) of the 

object, (2) followed and rewarded by an aesthetic feeling (Aesthetic Measure), 

and (3) the realization of particular Order (O) in it. Finally, he offered the 

following formula for the aesthetic measure: 

 

Aesthetic Measure = Order / Complexity (2) 
 

The premise is that the aesthetic feeling produced by an object is a rate of 

elements of order by the effort to perceive this order. It does not necessarily 

mean that the effect is more substantial, but it produces more associations in 

relation to the effort to perceive it. For Birkhoff, it is the role of aesthetics to 

define the elements of order and complexity for each class of aesthetic objects. 

2.3 Parts from wholes 

The analysis of how parts relate to each other and the whole of a building is 

adopted to adapt Birkhoff’s aesthetic measure formula to architecture. Parts to 

whole relationship is a keystone to classical architectural aesthetic theories. 

Some relevant examples are cited ahead with terms associated with parts and 

whole are in bold: 

 

“[…] Beauty [is] when the appearance of the work is pleasing and in good 

taste, and when its members are in due proportion according to correct 

principles of symmetry” (Vitruvius, 1914). 

 

“Beauty is a definite proportional relationship among all parts of a thing, so 

that nothing can be added, reduced, or changed, without making that thing less 

deserving of approval” (Alberti, 2011). 

 

“Beauty will derive from a graceful shape and the relationship of the whole 

to the parts, and of the parts among themselves and to the whole, because 

buildings must appear to be like complete and well-defined bodies, of which 

one member matches another and all the members are necessary for what is 

required” (Palladio, 2002). 

 

Even though this discussion has lost its forefront position in contemporary 

architecture aesthetics discourse, it has gained attention in cognitive 

psychology. There are two divergent theories about how humans perceive the 

world disputing for hegemony: Feature Integration Theory (FIT) and 

Recognition-by-Components theory (RBC) (Goldstein, 2011). Both approaches 

defend that we perceive parts (lines, curves, colors for FIT and 3D parts named 

Geons for RBC) and subsequentially (FIT) or parallelly (RBC) put them together 

to recognize wholes as objects and environments. 

Using algorithms like MSER, computers can also recognize parts in images 

(Matas et al., 2004). MSER binarizes images across multiple thresholds, and 



 

when a region is consistent among them, it is recognized as a part. Sardenberg 

and Becker used MSER to analyze and quantify architectural images through 

a diagram of scaled parts - that focuses on the number of individual parts - and 

a diagram of connectivity graph - that enables machines to grasp how parts 

relate (Sardenberg & Becker, 2022b). 

Machine learning models have been proving more consistent than 

algorithms for computer vision in recent years. The latest one, with impressive 

results, is the Segment Anything Model (SAM) (Kirillov et al., 2023). SAM and 

MSER capture different qualities of architectural images, as seen in Figure 3. 

SAM consistently segments entire buildings from their context, while MSER 

captures architectural elements from an overall building. The experience of 

architecture is a constant reappraisal of parts producing wholes. As a 

Matryoshka doll, parts and wholes change roles in the perception of 

architecture. The observer always perceives that a part on a particular scale is 

a whole on a smaller scale, while what was a whole becomes a part on a larger 

scale. Therefore, SAM and MSER are complementary methods to understand 

how parts and wholes interplay in architectural perception. 

 

 

Figure 3. HWKN’s Wendy Pavilion and diagrams of scaled parts and of connectivity 
graph produced using SAM and MSER. Source: HWKN, 2012, and Authors, 2023. 

To evaluate the parts recognized by SAM and MSER, we use two diagrams 

(Figure 3): The diagram of scaled part is used to output the number of parts of 

an image, and the diagram of connectivity graph is applied to extract the 

number of connections between all parts that intersect and the length of each 

vertex that connects their centroids. These values are used in an adapted 

version of the aesthetic measure formula: 

 

 

(3) 



 

Finally, the weight of each term of the formula is calibrated according to a 

specific audience. The audience’s data-gathering details and the formula’s 

calibration are described in Sardenberg and Becker (2022a). 

2.4 The predicted hedonic response model 

The predicted hedonic response (PHR) model is an artificial neural network 

model trained to predict the hedonic response of a specific audience. It uses 

the quantitative outputs of the diagrams of scaled parts and connectivity graph 

as input neurons. The target output is the average hedonic response of the 

audience. It was previously tested and proved efficient for navigating a 

parametric model’s solution space and scoring and ranking its designs despite 

its accuracy not being high (Sardenberg & Becker, 2023). 

 

Table 1. Comparison between the artificial neural networks trained on MSER, SAM, 

and MSER+SAM. 

 

 

      

Avg. 

Average 
Response 
(Ground 

truth) 

3.50 4.50 7.50 6.00 7.00 3.00  

ANN MSER 3.01 4.60 5.11 5.98 7.21 7.61  

ANN MSER 
Accuracy 

83% 97% 53% 99% 97% 39% 78% 

ANN SAM 4.45 7.92 4.77 4.65 5.32 5.75  

ANN SAM 
Accuracy 

78% 56% 42% 70% 68% 52% 61% 

ANN 
MSER+ 

SAM 
3.60 4.24 7.95 6.13 7.24 2.88  

ANN 
MSER+ 

SAM 
Accuracy 

97% 93% 94% 97% 96% 95% 95% 

 

Sardenberg & Becker (2023) argued that the PHR model trained using 

MSER could increase accuracy by combining it with other models. Considering 

the better consistency of SAM, it was expected that a new PHR model trained 

on it would be more accurate. However, compared with the ground truth in 

Table 1, the PHR model trained on SAM performs worse than the one trained 

on MSER. However, its accuracy increases substantially when an ANN model 

is trained using MSER and SAM. After 30,000 steps of training, it reaches an 

RMSE of 0.32, an R2 score of 0.93, and an accuracy of 95% 



 

3 Results 

The experiment described in this paper fosters the application of a 

computational aesthetics framework to map the latent space of GAN and 

present it to a designer and enable them to understand its design possibilities 

better, mainly focusing on counter-intuitive and unexpected concepts and 

designs. The latent space map allows an intuitive interaction between a 

designer and the latent space.  

3.1 Latent space map 

To flatten the 512-dimensional space of the latent space into two-

dimensional cartesian space, t-SNE was applied. t-SNE is a statistical method 

that maps together similar data and maps further dissimilar data. It was used to 

map each image in a 2D space according to its aesthetic measure, calibrated 

aesthetic measure, number of parts, number of connections, and connection 

length average of MSER and SAM. As shown in Figure 4, it successfully 

clusters similar images.  

 

Figure 4. Bidimensional latent space map with 75 designs produced by the GAN 
model. Source: Authors, 2023. 



 

In three dimensions, the vertical location of the image is defined by the 

output of the PHR model, which places on top the highest-scoring images 

(Figure 5). This sorting allows filtering the map to show only the highest-scoring 

images. This 3D map is interactive and can be zoomed in and out to see 

different designs in more detail. 

 

Figure 5. Perspective view of the latent space map of 1000 designs produced by the 
GAN model. The t-SNE method defines the horizontal green and red axis coordinates, 

while the PHR model defines the vertical blue coordinates. Source: Authors, 2023 

4 Discussion 

Generative image models are transforming architectural culture and 

practice. Text-to-image models like Stable Diffusion have produced 

architectural images comparable in quality to conventional photo-realistic CGI. 

However, since these models are trained on existing image datasets, they can 

only replicate and mimic mainstream architectural ideas. This ability of 

generative models obliges architects to differentiate themselves to produce new 

architectural concepts not present in generative models’ datasets. Therefore, it 

is necessary to explore new diagrams of architectural disciplinary problems, like 

how architectural objects touch the ground, how mass relates to voids, inside 

to outside, the surface to volume, and parts to the whole. It is through 

architectural knowledge and imagination that architects can produce works that 

go beyond the average of a generative model. However, that does not mean 

that generative models cannot be helpful. Architects can navigate the latent 

space to explore unfinished, shifting, unfamiliar, counter-intuitive, and strange 



 

design concepts. A synonymous of latent interesting for imagination is dormant. 

The latent space is populated by many dormant architectural concepts and 

diagrams waiting to be activated by designers exploring it. 

The latent space offers the challenge of never freezing the design process 

in a single, actual, optimized design solution. In traditional paper-based design, 

the architect explores options to narrow it to a single product. In parametric 

design, the architect designs an algorithm that produces many variations in 

extensive quantities, ranked by many quantitative criteria. The latent space of 

GANs allows the design process to continuously transform its intensive qualities 

and the latent space map to explore unforeseen design options. The latent 

space is closer to Cache’s original concept of the objectile, a status of the object 

that is a projectile launched into the world with no predefined target. 

The latent space demands architects to question again: can architecture 

perpetually wander its possibilities, or do we always need to choose a moment 

to freeze it? Can the walk through the latent space delay decisions to allow 

permanence in the cloud of images? Is the latent space a prolific and unstable 

reflexive field? 
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